Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37761112

RESUMO

Soy isoflavones are considered important sources of bioactive compounds, but they are poorly absorbable, due to their large hydrophilic structures. Some biotransformation strategies have been used to convert the glycosidic form into aglycones, making them available for absorption. This study evaluated the potential of enzymatic and/or microbial fermentation combined bioprocesses in a soymilk extract before and after gastrointestinal in vitro digestion. Commercial ß-glucosidase (ET) and a mix of commercial probiotics (F) containing Lactobacillus acidophilus, Lactobacillus casei, Lactococcus lactis, Bifidobacterium bifidum, and Bifidobacterium lactis were used to biotransform the soymilk phenolic extract. An isoflavone profile was identified using HPLC-DAD, total phenolic content was identified using the Folin-Ciocalteu test, and antioxidant capacity was identified using ORAC and FRAP. Soymilk enzymatically treated (ET) followed by microbial fermentation (ET + T) resulted in better conversion of glycosylated isoflavones (6-fold lower than control for daidzin and 2-fold for genistin) to aglycones (18-fold greater than control for dadzein and genistein). The total phenolic content was increased (3.48 mg/mL for control and 4.48 mg/mL for ET + T) and the antioxidant capacity was improved with treatments of ET + T (120 mg/mL for control and 151 mg/mL with ORAC) and with FRAP (285 µL/mL for control and 317 µL/mL). After the in vitro digestion, ET + T samples resulted in a higher content of genistein (two-fold higher than control); also, increases in the total phenolic content (2.81 mg/mL for control and 4.03 mg/mL for ET + T) and antioxidant capacity measured with ORAC were greater compared to undigested samples. In addition, the isolated microbial fermentation process also resulted in positive effects, but the combination of both treatments presented a synergistic effect on soy-based products.

2.
Food Sci Technol Int ; 25(5): 385-393, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30691287

RESUMO

The efficacy of single and combined treatments based on plant essential oils was investigated against Escherichia coli strains persistent in food-processing facilities. Surface materials (stainless steel and polystyrene), disinfectants (peracetic acid and sodium hypochlorite), and conditions (25 ℃, frequency of sanitizing of 24 h) commonly present in the food industry were also used to reach a more realistic approach. Thyme and pepper-rosmarin oils were significantly (P < 0.05) very effective against planktonic cells and biofilms formed by strains E6 and E7, respectively, followed by peracetic acid. Meanwhile, craveiro oil showed an efficacy that is significantly (P < 0.05) higher than sodium hypochlorite. All these disinfectants except sodium hypochlorite were able to kill 99.99% of biofilm cells in the range of concentrations tested (0.1%-3% v/v). However, binary treatments were needed to decrease the doses of these essential oils significantly (P < 0.05) for the control of E. coli biofilms. The effectiveness of peracetic acid against E. coli biofilms was also improved by blending with these essential oils. In particular, blends of pepper-rosmarin with thyme or peracetic acid demonstrated a suitable effectiveness for the control of persistent E. coli present in food-related environments. The application of these treatments could also reduce the current environmental impact generated during food-processing sanitization.


Assuntos
Biofilmes/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Manipulação de Alimentos/instrumentação , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Desinfetantes/farmacologia , Escherichia coli/isolamento & purificação , Microbiologia de Alimentos/métodos , Ácido Peracético/farmacologia , Rosmarinus/química , Hipoclorito de Sódio/farmacologia , Thymus (Planta)/química
3.
Int J Food Microbiol ; 286: 128-138, 2018 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-30099281

RESUMO

Effective and environmentally-friendly alternatives to traditional disinfectants are necessary to reduce the pollution and the emergence of antimicrobial-resistant bacterial strains in food-related environments. In the present study, treatments based in single and combined applications of plant essential oils (EOs) were evaluated for control Staphylococcus aureus biofilms. EOs of Lippia sidoides, Thymus vulgaris and Pimenta pseudochariophyllus showed a higher efficacy than peracetic acid and sodium hypochlorite against S. aureus planktonic cells and 24-h-old biofilms formed on polystyrene and stainless steel under food-related conditions. High concentrations of thymol and chavibetol were detected in these EOs, as well as the presence of other antimicrobial compounds such as carvacrol, eugenol, p-cymene, limonene, α-pinene, α-terpineol, terpinen-4-oil and linalool. L. sidoides oil were particularly effective against S. aureus, but doses higher than 2.75% (v/v) were required to completely eradicate 24-h-old biofilms. Binary combinations of L. sidoides, T. vulgaris and P. pseudochariophyllus allowed decrease significantly doses required to reduce 99.99% the number of biofilm cells. Furthermore, peracetic acid increased its efficacy against S. aureus biofilms by the combined application with these EOs. The most effective treatments against S. aureus biofilms were those combining L. sidoides with T. vulgaris or peracetic acid. Therefore, these EO-based treatments can be considered as an effective and environmentally-friendly alternative to control S. aureus biofilms in food-contact surfaces.


Assuntos
Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Desinfetantes/farmacologia , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Monoterpenos Acíclicos , Monoterpenos Bicíclicos , Biofilmes/efeitos dos fármacos , Monoterpenos Cicloexânicos , Cicloexenos/farmacologia , Cimenos , Limoneno/farmacologia , Testes de Sensibilidade Microbiana , Monoterpenos/farmacologia , Ácido Peracético/farmacologia , Hipoclorito de Sódio/farmacologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Timol/farmacologia , Thymus (Planta)/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...